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Abstract

This paper investigates the effect of capacity constraints on the sustainability of collusion in

markets subject to cyclical demand fluctuations. In the absence of capacity constraints, Haltiwanger

and Harrington (1991) [Haltiwanger, J., Harrington, J., 1991. The impact of cyclical demand

movements on collusive behavior. Rand Journal of Economics. 22, 89–106.] show that firms find it

more difficult to collude during periods of decreasing demand. We find that this prediction can be

overturned if firms’ capacities are sufficiently small. Capacity constraints imply that punishment

profits move procyclically, so that periods of increasing demand may lead to lower losses from

cheating even if collusive profits are rising. Haltiwanger and Harrington’s main prediction remains

valid for sufficiently large capacities.
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1. Introduction

The ability of firms to collude over the business cycle has been a major topic of

research in theoretical and empirical industrial organization over the last two decades. The

literature has commonly used an infinitely repeated game where firms try to sustain the

highest level of profits with credible threats to punish defectors. As firms have a short-run

temptation to cheat from the collusive agreement, collusion is stable only if the one-shot

deviation gains do not exceed the losses of future collusive profits, net of the value of

punishment profits. Changes in demand conditions affect both the gains and losses from

cheating, implying that the balance between the two need not remain constant as demand

moves over time. Therefore, the state of the business cycle has a crucial effect on the

sustainability and profitability of collusive outcomes.

In this paper, we revisit the classical question of whether firms find it more difficult to

collude during booms or during recessions. Our point of departure is the model developed

by Haltiwanger and Harrington (1991) (hereafter, HH). Holding constant the level of

current demand, they show that firms’ incentives to deviate are strengthened when future

demand is falling, given that the value of the forgone collusive profits is smaller as

compared to when demand is rising. Therefore, it is more difficult to sustain collusion

during periods of decreasing demand. This result crucially depends on marginal costs

being constant in output and symmetric across firms, as this means that punishment profits

are zero and therefore invariant to demand movements. If a weakening of demand

conditions also leads to a drop in punishment profits, it is no longer clear whether firms

would lose less by deviating in periods of falling demand. What this implies for our

current purposes is that the effects of future demand movements on the sustainability of

collusion are not unambiguous, as they are under the assumption of constant (and

symmetric) marginal costs.1

By introducing capacity constraints into HH’s formulation, we show that the issue of

whether firms find it more difficult to collude during booms or recessions is linked to the

value of firms’ capacities. When capacity constraints are sufficiently tight,2 firms find it

more difficult to collude during booms, whereas the contrary is true when capacities are

sufficiently large. Intuitively, when capacity constraints are severe enough, the lack of

excess capacity during a boom implies that the future costs of being punished are low.

Thus, the losses from cheating decrease even if collusive profits are rising. In contrast, the

emergence of excess capacity during a recession makes the punishment threat more severe,

and thereby induces an increase in the losses from cheating even if collusive profits

decline.
1 Typically, most of the industries which have been subject to empirical analyses of collusive behavior are

characterized either by cyclical cost movements (as the gasoline market analyzed by Borenstein and Shepard

(1996)), or by tight capacity constraints (as the aluminum industry analyzed by Rosenbaum (1989), Bresnahan

and Suslow (1989), or the cement industry analyzed by Iwand and Rosenbaum (1991) and Rosenbaum and

Sukharomana (2001), among others).
2 All along the paper, we will use the term dtightT to refer to a level of capacities below a certain threshold but

still above the level that would make collusion indistinguishable from one-shot non-cooperative behavior.
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1.1. Related papers

This paper also contributes to highlight the importance of the assumptions made in

some of the previous papers on collusion. For our current purposes, two assumptions are

crucial: first, whether firms are capacity-constrained (or more generally, whether optimal

punishment profits depend on demand levels); and second, whether there is some link

between current and future demand conditions. The literature on collusion is vast, so we

will just review here the papers that are most related to our work.

In a seminal paper, Rotemberg and Saloner (1986) explore optimal collusive pricing

assuming that demand is subject to (observable) independent and identically distributed

(i.i.d.) shocks and that firms’ marginal costs are constant in output. Under these

assumptions, the current level of demand only affects the sustainability of collusion

through its positive effect on firms’ short-run temptation to cheat: deviations are more

profitable in periods of high demand given that undercutting allows the deviator to capture

a larger share of the market. However, the level of current demand has no effect on firms’

expectations of future demand, and thus the expected losses from cheating are independent

of the level of current demand. Associating a boom (recession) with a period of high (low)

demand, Rotemberg and Saloner find that it is more difficult to sustain collusion during

booms, when the incentive to deviate is the greatest.3

By introducing capacity constraints into Rotemberg and Saloner (1986)’s model,

Staiger and Wolak (1992) show that the price wars during booms relationship can be

reversed. The main reason is that capacity constraints, by limiting the size of the market

that a firm can capture by itself, reduce the profitability of defections when demand is

sufficiently high. However, by retaining the assumption that the shocks in demand are

i.i.d., Staiger and Wolak omit an equally important factor: namely, that the existence of

capacity constraints also alters the value of the future losses from cheating through their

impact on the severity of future punishments. Brock and Scheinkman (1985) and Compte

et al. (2002) highlight the importance of capacity constraints in shaping punishment

possibilities. However, since these models assume fixed demand over time, they cannot be

used to address the issue of whether booms or recessions are critical for the sustainability

of collusion.

Haltiwanger and Harrington (1991) replace the i.i.d. assumption by assuming instead

that demand is subject to (deterministic) cyclical demand fluctuations.4 This approach is

better suited to understand the influence of the business cycle on firms’ pricing behavior

since bstronger (weaker) demand tomorrowQ is exactly what firms expect if they believe

that the economy is in an upturn (downturn). Hence, even if, in the absence of capacity
3 Given the i.i.d. assumption, expected future demand at a period with a high demand realization is lower than

current demand. Therefore, in Rotemberg and Saloner’s model, a boom (current demand is high) is also a period

in which future demand is falling. This should be noted to avoid confusion with our (and HH’s) terminology,

according to which a boom is a period followed by larger demand levels.
4 Kandori (1991) assumes correlated demand shocks. More recently, Bagwell and Staiger (1997) assume that

the level of market demand alternates stochastically between states of slow (recessions) and fast (boom) growth

rates. They show that collusive pricing is weakly procyclical or countercyclical depending on whether market

demand growth rates are positively or negatively correlated through time.
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constraints, it is still true that the greatest deviation gains are achieved at the peak of the

cycle, it is no longer clear whether collusion will be weaker during booms if the greater

incentives to deviate are offset by the increasing value of the forgone collusive profits.

Given that our paper is closely related to HH’s, it is worthwhile to understand its main

insights through the following thought experiment. Consider two points on the cycle with

equal demand, but such that demand is increasing in one and decreasing in the other.

Clearly, the losses from cheating are greater at the point at which demand is rising, since

the near-term profits, which are more heavily weighted, are expected to be higher. Thus,

the high cost that would be induced by a price war acts as a deterrent to firms’ incentives

to cheat. Since such a deterrent is weaker when demand is expected to fall, collusion is

more vulnerable during recessions than during booms. However, as already mentioned, the

constant marginal cost assumption hides the possibility that future demand movements

may also affect future punishment profits, and thus provides an incomplete picture of

collusion possibilities in industries where this assumption is not satisfied.

Our model relaxes both the assumption that demand shocks are i.i.d. and the assumption

that marginal costs are constant in output. By allowing demand to move in cycles (as

opposed to Rotemberg and Saloner (1986) and Staiger and Wolak (1992)), we can shed

some light on the link between the state of the business cycle and the sustainability of

collusion. Furthermore, by introducing capacity constraints, we can provide an answer to

the question of whether firms find it more difficult to collude in booms or in recessions for

all capacity values, and not only for the limiting case in which capacities tend to infinity

(which is equivalent to the assumption of capacity-unconstrained firms, as in HH). By

capturing these two elements at a time, our model is able to highlight new results that,

although previously conjectured by some authors, have not been so far formalized.5

The remainder of the paper is organized as follows. Section 2 presents the model.

Section 3 provides the analysis and main results, and Section 4 concludes. Proofs are

relegated to Appendix A.
2. The model

Consider an industry with n infinitely lived firms, where nz2 and finite, which

compete in every period tz1 by making simultaneous pricing decisions. Firms are

symmetric as they offer homogenous products, and face identical cost functions with

constant marginal costs (normalized to zero) up to their (exogenously given) symmetric

capacity, k. Production above capacity is impossible, i.e. it is infinitely costly. Market

demand in period t is represented by the linear demand function D( p, ht)=max {ht�p,

0}, where p denotes price and ht is a demand parameter.

We further assume that sales are allocated according to the efficient rationing rule.6

That is, customers buy first from the low-priced firms, until their capacities are exhausted.
5 See, for instance, Borenstein and Shepard (1996), Cowling (1983), Iwand and Rosenbaum (1991), and

Rosenbaum (1989).
6 This specification has been used, among others, by Kreps and Scheinkman (1983) and Osborne and Pitchik

(1986); Davidson and Deneckere (1986) discuss alternative rationing rules.
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The aggregate demand faced by the high-priced firms equals market demand at their price

less the quantity sold by the lower-priced firms. Ties among the high-priced firms are

(symmetrically) broken.

Accordingly, when all firms price at p, total profits are given by

pm p; htð Þ ¼ pmin
�
D p; htð Þ; nk

�
: ð1Þ

The price that maximizes (1), referred to as the (capacity-constrained) monopoly price,

is denoted as pm(ht). It is easy to check that pm(ht) and pm( pm, ht) are increasing in ht.

Also, when all firms but one offer prices strictly below p, the profit of the high-priced

firm when it charges p is given by

pr p; htð Þ ¼ pmax
�
0;min

�
D p; htð Þ � n� 1ð Þk; k

��
: ð2Þ

Whenever D(0, ht)N (n�1) k, there exists a unique price which maximizes (2). Such a

price is denoted pr(ht) and it is referred to as the (capacity-constrained) residual monopoly

price. If D(0, ht)V (n�1) k, the high-priced firm earns zero profits for all pz0. Thus, in

this case, we define pr(ht)=0. It is easy to check that pr(ht) and pr( pr, ht) are non-

decreasing in ht and non-increasing in k.

To investigate the impact of demand fluctuations on the sustainability of collusion,

we place a similar structure on the intertemporal movement of demand as that of

HH. The demand parameter ht is assumed to fluctuate in cycles of length t̄ according

to (3),

ht ¼

h1 if ta 1; t¯þ 1; 2t¯þ 1; Nf g;
v v
ht̂ if ta t̂t ; t¯þ t̂t ; 2t¯þ t̂t ; Nf g;
v v
ht̄ if ta t¯; 2t¯; 3t¯; Nf g:

8>>>><
>>>>:

ð3Þ

We only impose two restrictions on this cycle. First, the demand cycle must be single-

peaked. That is, starting at period 1 of the cycle, the demand function is assumed to shift

out over time, up to some period t̂, and to shift back until it reaches its minimum level at

t = t̄+1.

A1.

h1b N bht̂ N Nht̄Nh1:

Assumption A1 implies that monopoly profits and residual monopoly profits move in

the same direction as market demand. That is, monopoly profits increase from period 1 to

period t̂, and then shift down from period t̂+1 to t̄. Similarly, residual monopoly profits

increase from the first period at which demand at marginal costs exceeds the aggregate

capacity of [n�1] firms up to period t̂, and then shifts down from period t̂+1 until the last

point of the cycle at which demand at marginal costs exceeds the aggregate capacity of

[n�1] firms. For all other periods, residual monopoly profits equal zero, and are therefore

invariant to demand movements.
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Last, in order to make the analysis meaningful, aggregate capacity must exceed market

demand at the monopoly price at the trough of the cycle. Otherwise, perfect collusion

would arise as a one-shot Nash-equilibrium in every period of the cycle.

A2.

D pm; h1ð Þbnk:

No further restrictions are imposed on the demand cycle. In particular, it can be

symmetric or asymmetric both in the length of the recession and boom, or in the speed at

which demand grows during booms or declines during recessions.7

Given this demand and cost structure, firms make simultaneous pricing decisions in

every period t. With an infinite horizon, a strategy for firm i is an infinite sequence of

functions, {Sit}t=1
l , where Sit specifies a cumulative distribution function over [0, ht] to be

used by firm i in period t as a function of the prices charged by all firms in all previous

periods. The payoff function for firm i is the sum of discounted profits, where firms’

common discount factor is da (0, 1). All firms are assumed to be risk neutral, and hence

aim to maximize their expected payoff. All aspects of the game are assumed to be common

knowledge.
3. Analysis and results

The aim of this paper is to highlight the effect of capacity constraints on the

sustainability of perfect collusion over the cycle. Therefore, we will first characterize the

necessary and sufficient conditions for the path of monopoly prices, { pm(ht)}t=1
l , to be a

subgame perfect equilibrium outcome of the infinitely repeated game described above.

We consider the trigger strategy that prescribes firms to price at the monopoly price8 in

every period as long as no firm has deviated in previous periods, and to revert forever to

the static Nash equilibrium strategy in the event of a deviation. At the static Nash

equilibrium, each firm receives its minmax profits (Brock and Scheinkman, 1985; Kreps

and Scheinkman, 1983), i.e. the lowest value of profits a firm can be credibly driven down

to.9 Since more severe punishment threats would not be credible, Nash reversion

constitutes an optimal penal code.
8 More precisely, the strategy calls firms to play a degenerate mixed strategy with a masspoint of size one at the

monopoly price.
9 In detail, if ht V (n�1) k, the static Nash equilibrium has all firms pricing at (zero) marginal costs and earning

zero profits; if (n +1) k Vh t V2nk, the static Nash equilibrium has all firms pricing at the market clearing price

(h t�nk); thereby making profits (h t�nk)k. Last, if (n�1)k Vh t V (n +1)k the static Nash equilibrium involves

mixed-strategy pricing with expected profits given by ½ ht� n�1ð Þk
2

	2.

7 Implicit in this formulation is the assumption that demand movements are not so strong so as to induce exit or

entry, nor capacity expansions or contractions. Endogenizing market structure and capacity levels is out of the

scope of the paper. See Rotemberg and Woodford (1992) for a general equilibrium approach and Staiger and

Wolak (1992) for analysis of collusion with endogenous capacities.
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Accordingly, the path of monopoly prices is a subgame perfect equilibrium outcome if

and only if the following condition is satisfied,

Lm t; dð ÞzGm tð Þ8t; ð4Þ

where Lm(t; d) denotes the present discounted value of the losses from cheating from

period t +1 onwards and Gm(t) represents the one-shot deviation gain in period t.

Formally,

Lm t; dð Þ ¼
Xl

s¼tþ1

ds�tLm sð Þ;

Lm sð Þ ¼ 1

n
pm pm; hsð Þ � pr pr; hsð Þ: ð5Þ

and

Gm tð Þ ¼ pm htð Þmin
n
D pm; htð Þ; k

o
� 1

n
pm pm; htð Þ: ð6Þ

Eq. (5) states that the losses from cheating in period t are given by the present

discounted value of the difference between each firm’s (symmetric) share of monopoly

profits, and the static Nash equilibrium profits in all the periods s N t. It is easy to check

that the profits that a firm makes at the static Nash equilibrium are the same as if all its

rivals priced at zero and the firm maximized its profits over the residual demand (Brock

and Scheinkman, 1985), so that pr( pr, hs) represents the static Nash equilibrium profits in

period s N t. Henceforth, we will refer to Lm(s) as the one-shot losses from cheating in

period s N t. Last, as implicit in Eq. (6), the optimal deviation in period t is to slightly

undercut pm(ht), and this results in profits pm(ht)min{D( pm, ht), k} rather than (1/

n)pm( pm, ht).

The incentive compatibility constraint, (4), can be solved in terms of the discount

factor, d. As is already standard, the path of monopoly prices is subgame perfect if and

only if the discount factor is sufficiently large.

Proposition 1. There exists d̂a (0, 1) such that the price path {pm(ht)}t=1
l is supportable

by subgame perfect equilibria if and only if d a (d̂, 1).

Proposition 1 is used to implicitly define the period of the cycle when firms find it more

difficult to sustain perfect collusion. When the discount factor exceeds d̂, the incentive

compatibility constraint (4) is satisfied with a strict inequality in all periods. When it

equals d̂, there exists some point(s) of the cycle, which we will denote t*, at which the

incentive compatibility constraint (4) is satisfied with a strict equality. Therefore, as the

discount factor is slightly reduced below d̂, t* is the first period(s) at which the monopoly

price cannot not be sustained. We thus refer to any such t* as the critical point of the cycle.

In order to assess whether t* belongs to the boom or to the recession, we first need to

investigate how the value of the one-shot losses and gains from cheating depend on the

level of firms’ capacities.

For this purpose, let us first assess how the one-shot losses from cheating Lm (t) vary as

a function of the demand parameter ht. Consider a situation in which capacities are so
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large relative to demand that punishment profits are driven down to zero. In this case, the

one-shot losses from cheating are just equal to the value of the forgone monopoly profits,

which are clearly increasing in demand. However, for smaller capacities firms are

capacity-constrained and unable to drive punishment profits to zero. Hence, a

strengthening of demand conditions not only leads to an increase in monopoly profits,

but also to less severe punishments. This implies that the increase in the one-shot losses

from cheating is at least partially offset. If capacity constraints are sufficiently tight, the

increase in monopoly profits is more than offset by the increase in punishment profits, so

that the losses from cheating start to decrease as demand conditions strengthen.

We can perform the same analysis to understand the impact of demand fluctuations on

the value of the one-shot deviation gains, Gm(t). Consider first a situation in which each

firm’s capacity is large enough so that a defector would have enough capacity to serve all

demand at the monopoly price. Thus, the larger demand, the higher the monopoly profits,

and the higher the one-shot deviation gains. For smaller capacity values, the deviator

would be capacity-constrained to expand its production up to the monopoly quantity.

Since, as a function of demand, the increase in the deviator’s profits is of lower-order

magnitude than the increase in monopoly profits, the rate of growth of the one-shot

deviation gains starts to decrease. If capacities are small enough, the former effect

dominates the latter, and implies that the one-shot deviation gains are decreasing in

demand.

The following Lemma identifies the critical capacity value above (below) which the

one-shot losses and gains from cheating in a given period are increasing (decreasing) in the

demand parameter ht.

Lemma 1. The one-shot losses and gains from cheating, Lm(t) and Gm(t), are increasing

in ht if kzht/n, and decreasing otherwise.

Building on these insights, we can now assess whether the critical point of the cycle for

perfect collusion belongs to the boom or to the recession, and how this depends on the

value of firms’ capacities.

Proposition 2. If kVh1/n, the critical point of the cycle belongs to the boom,

t*a {1,. . .,t̂�1}; and if kzht̂ / n, it belongs to the recession, t*a {t̂,. . .,t̄}.

Proposition 2 shows that the critical period of the cycle belongs to the boom when each

firm’s capacity is small enough, and it belongs to the recession when each firm’s capacity

is large enough.

As shown in Lemma 1, when capacities are large enough, i.e. kzht̂ /n, both the losses

from cheating and the one-shot deviation gains are increasing in ht in all periods of the

cycle. Hence, the same logic as in HH applies. Namely, for any point at which demand is

rising, tB, one can always find a point at which demand is falling, tR, that yields at least as

high a one-shot gain from defection. The losses from cheating would be greater at tB, since

the near term losses, which are more heavily weighted, exceed those at tR. Therefore, as d
is slightly reduced below d̂, the first point at which the monopoly price cannot be sustained

belongs to the recession.

On the other hand, just the opposite occurs when capacities are small enough, i.e. when

kVh1 /n. In this case, as shown in Lemma 1, the one-shot losses and gains from cheating
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are decreasing in ht in all periods of the cycle. Therefore, for any point at which demand is

falling, tR, one can always find a point at which demand is rising, tB, that yields at least as

high one-shot gain from defection. Now, the losses from cheating would be greater at tR,

since the near term losses, which are more heavily weighted, exceed those at tB. Therefore,

as d is slightly reduced below d̂ , the first point at which the monopoly price cannot be

sustained belongs to the boom, and not to the recession.

When capacities lay in the interval (h1 /n, ht̂ /n), there may be some periods at which

the losses and gains from cheating are decreasing in demand, and others in which they

are increasing in demand. Hence, we cannot apply the same reasoning as above.

Intuition suggests that there should be monotonicity between the level of firms’

capacities and the location of the critical point for perfect collusion. The numerical

exercise presented below confirms that there are examples in which this monotonicity

holds.

We have set n =4; and have assumed that the demand parameter ht moves in a

symmetric eight-period cycle. Specifically, the demand parameter takes the following

values, ht ={160, 170, 180, 190, 200, 190, 180, 170}. The peak occurs at period t=5,

periods ta{1, 2, 3, 4} belong to the boom, and periods ta{5, 6, 7, 8} belong to the

recession. We have considered variations over k to compute, for each capacity level, the

critical period for perfect collusion t* (upper panel in Fig. 1) and the critical discount

factor for perfect collusion d̂ (lower panel in Fig. 1).

Confirming our theoretical findings, the critical period for perfect collusion belongs to

the boom for all kVh1 /n =40, and to the recession for all kzht̂ /n =50. Furthermore, there
40 50 60 70 80 90 100 110 120 130 140
1

2

3

4

5

6

7

8

Capacity k

C
rit

ic
al

 P
er

io
d

40 50 60 70 80 90 100 110 120 130 140
0.5

0.6

0.7

0.8

0.9

1

Capacity k

C
rit

ic
al

 D
is

co
un

t F
ac

to
r

Fig. 1. The critical period, t*, and critical discount factor for perfect collusion, dˆ, as a function of k.
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exists a unique capacity level, k =45a (h1/n, ht̂/n) below (above) which the boom

(recession) is critical.

Last, consistently with Brock and Scheinkman (1985), Fig. 1 depicts a non-

monotonic relationship between the critical discount factor and the value of firms’

capacities, whose value first decreases as capacity grows up to k=45 (when the

recession becomes critical), and then increases up to the point in which the defector

is no longer capacity-constrained to serve all the market at the monopoly price,

k =100.
4. Conclusions

The main objective of this paper has been to identify whether firms find it more

difficult to collude during booms or during recessions, and to assess how this depends

on the level of firms’ capacities. By introducing capacity constraints in a model

similar to Haltiwanger and Harrington (1991), we have shown that firms find it more

difficult to collude in booms for small capacities and recessions for large capacities.

The reason underlying this result is as follows: when firms face severe capacity

constraints, the impact of demand fluctuations on the value of future punishment

profits is greater than its effect on the value of the forgone collusive profits; hence,

periods of expanding demand give rise to lower losses from cheating, which make

collusion more difficult during booms rather than recessions. When capacity

constraints are not severe enough, the increase in the value of future punishment

profits during a boom is not sufficient to outweigh the faster increase in firms’

collusive profits. Thus, firms find it more difficult to collude during recessions even if

capacity constraints play a role in reducing the one-shot deviation gains and the

severity of optimal punishments.

The main implication of this analysis for empirical work is that the signs of the

effects of future demand on current prices are not unambiguous, as these also depend on

the value of firms’ capacities. This suggests that the projected link between the level of

future demand and the value of firms’ capacities could be used as an additional

determinant of the intertemporal price path in collusive industries subject to cyclical

demand fluctuations.
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Appendix A. Proofs

Proof of Proposition 1. The subgame perfect equilibrium conditions (as expressed in (4))

take the following form:

Lm t; dð Þ ¼ 1

1� dt̄
dLm t þ 1ð Þ þ N þ dt

¯�tLm t̄ð Þ þ N þ dt̄ Lm tð Þ
h i

zGm tð Þ:

First notice that Lm(t; 0)=0VGm(t), with a strict inequality at least in period 1 of the

cycle. Also, limdY1L
m(t; d)=lNGm(t) and (BLm(t; d)/Bd)N0=(BGm(t)/Bd). By the

continuity of Lm(t; d) in d, there exists d̂(t)a (0; 1) such that Lm(t; d)zGm(t) if and

only if dz d̂(t). Hence, the price path of monopoly prices is a subgame perfect

equilibrium outcome if and only if dz d̂=max{d̂(1),. . .,d̂(t̄ )}. Since d̂(t)a (0, 1)8 t, then
d̂a (0, 1). 5

Proof of Lemma 1. The losses and gains from cheating are given by:

Lm tð Þ ¼

ht
2

� �21
n

if htb n� 1ð Þk
ht
2

� �21
n
� ht� n�1ð Þk

2

h i2
if n� 1ð Þkbhtb nþ 1ð Þk

ht
2

� �21
n
� ht � kn½ 	k if nþ 1ð Þkbhtb2nk

8>><
>>:

Gm tð Þ ¼
ht
2

� �2n�1
n

if htb2k
ht
2
k � ht

2

� �21
n

if 2kbhtb2nk
:

(

Differentiating the above expressions with respect to ht;

BLm tð Þ
Bht

¼ f ht
2n

if htb n� 1ð Þk
1
2
n� 1½ 	 k � ht

n

� �
if n� 1ð Þkbhtb nþ 1ð Þk

ht
2n

� k if nþ 1ð Þkbhtb2nk

BGm tð Þ
Bht

¼ ht n�1
2n

if htb2k
1
2
k � ht

n

� �
if 2kbhtb2nk

:



Hence, Lm(t) and Gm(t) are increasing in ht if and only if kzht /n. 5

Proof of Proposition 2. We follow HH’s proof of Theorem 5, and introduce several

changes where needed. Let t* be defined by d̂= d̂(t*) (where d̂(t) has been defined in the

Proof of Proposition 1). To prove the Proposition, we then need to show that if kVh1 /n,
d̂N d̂(t) for all ta{t̂,. . .,t̄}, and if kzh t̂/n, d

ˆ
Nd

ˆ
(t) for all ta{1,. . .,t̂�1}. Since t* exists,

then it must lie in {1,. . .,t̂�1} if kVh1 /n, and in {t̂,. . .,t̄} if kzh t̂ /n.

Define f(t) as follows:

f tð Þumax s jhs zht; sa t þ 1; N ; t̄f gf g; ta 1; N ; t̂t � 1f g:



N. Fabra / Int. J. Ind. Organ. 24 (2006) 69–8180
f (t) is the latest point of the cycle at which the demand parameter is at least as great as the

demand parameter at a period t belonging to the boom. Given that the single peak of the

cycle is attained at t̂, it is clear that f(t) belongs to the recession.

The method of proof will be to show that the difference�
Lm t; dð Þ � Gm tð Þ

�
�
�
Lm f tð Þ; dð Þ � Gm f tð Þð Þ

�
; ð7Þ

is negative if kVh1 /n, and positive if kzh t̂ /n.

We prove the result for the case kVh1 /n. The proof for the second case is similar, with

only a change in the sign of the inequalities.

Let tBa{1,. . .,t̂�1} and tR= f(tB). Then,�
Lm tB; d

� �
� Gm tB

� ��
¼ 1

1� dt̄
dLm tB þ 1

� �
þ N þ dt̄ Lm tB

� �h i
� Gm tB

� �
; ð8Þ

�
Lm tR; d

� �
� Gm tR

� ��
¼ 1

1� dt̄
dLm tR þ 1

� �
þ N þ dt̄ Lm tR

� �h i
� Gm tR

� �
: ð9Þ

By the definition of f(t), we know by Lemma 1, that if kVh1/n, then Gm(tB)NGm(tR).

Hence, the difference between (8) and (9) is negative if

dLm tB þ 1
� �

þ N þ dt̄ Lm tB
� �

bdLm tR þ 1
� �

þ N þ dt̄ Lm tR
� �

: ð10Þ
Define:

AudLm tB þ 1
� �

þ N þ dt
R�tBLm tR

� �
; ð11Þ

BudLm tR þ 1
� �

þ N þ dt
¯�tRþtBLm tB

� �
: ð12Þ

By these definitions, condition (10) is equivalent to

Aþ dt
R�tBBbBþ dt

¯�tRþtBA:

Rearranging terms,

A

1� dt
R�tB

b
B

1� dt̄�tRþtB
: ð13Þ

The expression on the left hand side of (13) is the present discounted value of the

stream of the losses from cheating {Lm(tB+1),. . .,Lm(tR)} made every tR� tB periods, and

the right hand side is the present discounted value of the stream of the losses from cheating

{Lm(tR+1),. . .,Lm(tB)} made every t̄� tR+ tB periods. Since tR= f(tB) and kVh1 /n, by

Lemma 1 it is then true that Lm(tV)bLm(tU)8 tVa{tB+1,. . .,tR}, 8tUa{tR+1,. . .,tB}, which
implies that Lm(tB, d)bLm(tR, d). This proves that if k Vh1/n , then Lm(t ;

d)�Gm(t)bLm( f(t); d)�Gm( f(t))8 ta{1,. . .,t̂�1}. 5
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